

Future-proofing your access network with a consolidated platform: vCMTS & vPON

Jorge Figueroa

Sep 15, 2021

©2021 Harmonic Inc. All rights reserved worldwide

©2021 Harmonic Inc. All rights reserved worldwide.

Harmonic's contact

- Grant Bloom
 - Phone: 508-904-9004
 - Email: grant.bloom@harmonicinc.com

©2021 Harmonic Inc. All rights reserved worldwide

Summary

- Introduction
- Key Concepts
 - PON
 - Virtualization
- The Consolidated Access Platform
 - How virtualization and disaggregation enable a single platform for access networks
- MSO Network migration
 - Squeezing the most out of HFC while offering a seamless transition to PON

Introduction

4

2021 CABLE MARKET TRENDS

BROADBAND SERVICE EXPANSION	NETWORK CONVERGENCE	DATA & ANALYTICS
Greater connectivity in rural & urban areas	Multiple access technologies	Improvements in proactivity & monitoring
Increasing development of high-bandwidth apps	Sustainability	Flexibility & capacity management
	Leaner operations	

DISRUPTION – TRANSFORMATION – SUCCESS

LAY THE FOUNDATION FOR THE ULTRA-CONNECTED FUTURE

Avoid Regrettable Spend

• Maximize your existing HFC network

Boost Capacity & Efficiency

- Scale sustainably
- Step on the path to 10G

Improve cost savings

- Reduce operational complexity
- Eliminate legacy hardware & related costs

Enable Future Evolution

- Gain flexibility & agility
- Get a versatile multi-access solution

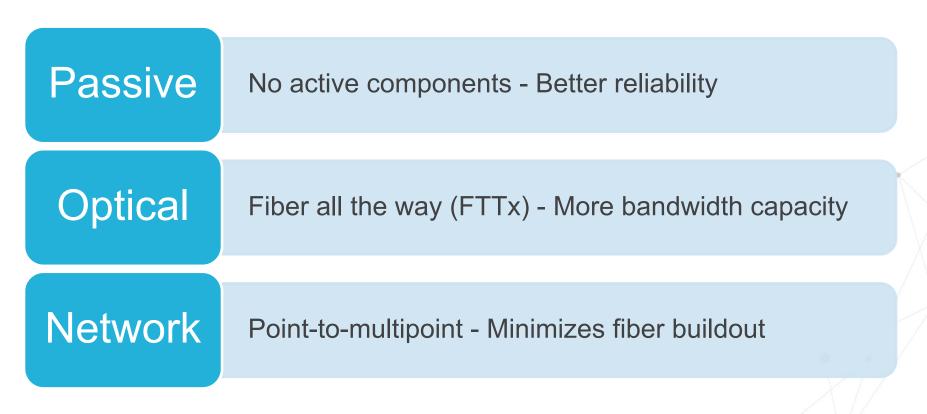
7

Key Concepts

- PON
- Virtualization

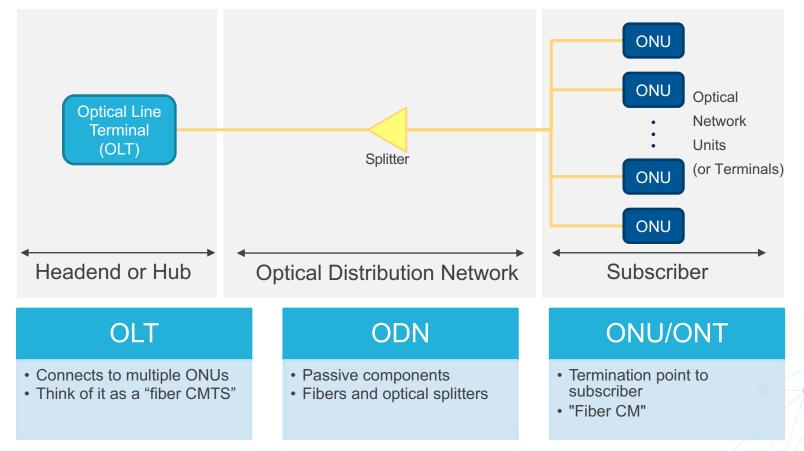
PON 101

8

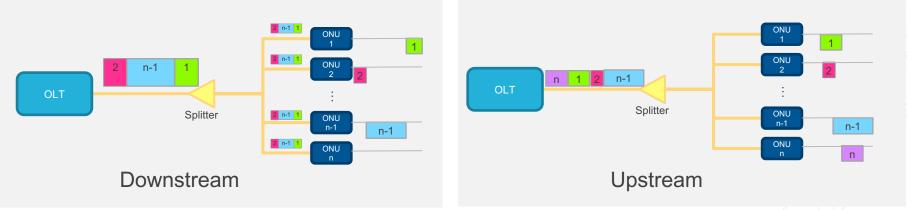


For this market, is your company a) Actively deploying PON? b) Planning to deploy PON? c) Considering to deploy PON? d) No PON plans at all

Please answer in the chat


Passive Optical Network (PON)

Components



Similarities between DOCSIS and PON

- Network architecture
 - Both are point to multipoint networks
 - Centralized controller (CMTS / OLT) distributes traffic across multiple users (CMs / ONUs)
- Transmission mechanism
 - PON is similar to early versions of DOCSIS
 - TDM in Downstream, TDMA in Upstream

DOCSIS	PON
RF (Coax)	Light (Fiber)
Modulated (QAM/OFDM)	Baseband
Variable Power Output - dBmV	Fixed Power Output - dBm
Configurable Frequencies	Set Wavelengths
Channel Bonding	No Bonding (yet)
Up to 160km	Around 20km
CMs are L3 devices	ONUs are *L2* devices
Contention based BW requests from CM	OLT polls ONUs for BW requests

PON is a much simpler protocol than DOCSIS

- ITU: International Telecommunications Union
- Developed PON standards since the mid 90s, focused is on the Telco market
- Gigabit PON (GPON) and 10Gig Symmetric (XGS PON) are the most widely deployed PON standards
- Designed to carry multiple types of traffic, like Ethernet, MPLS, or even legacy TDM voice or SDH.

GPON and XGS PON

- GPON has been deployed worldwide, mostly by Telcos but also by some MSOs
- XGS has started to gain traction in the last couple of years
 - XGS reuses the same transceivers used by 10G EPON
- NG-PON2 (40gig) is being deployed in small numbers by Verizon in the US
 - Seen as expensive due to the use of tunable transceivers
- Like DSL, ITU-PON is very layer 2 oriented
 - Most ONUs are unable to classify based on layer 3 parameters (i.e. src/dst IP address/port)
 - OLTs are simple switches (no routing)
- Unlike CableLabs, focus wasn't initially on interoperability
 - ONUs and OLTs need to be from the same vendor
 - Broadband Forum's TR-156 and TR-180 have tried to address this limitation with some limited success beyond provisioning

- IEEE: Institute of Electrical and Electronic Engineers
- Same standard body that created Ethernet (802.3) and WiFi (802.11)
- Developed 1G Ethernet PON (EPON) and 10G Ethernet PON (10G EPON)
- Released 25/50G standard in July 2020
- Main users are:
 - Tier 1 MSOs in US and Canada
 - Telcos in China, Japan, South Korea, Taiwan
- ONUs support L3 filtering and classification, similar to a cable modem.

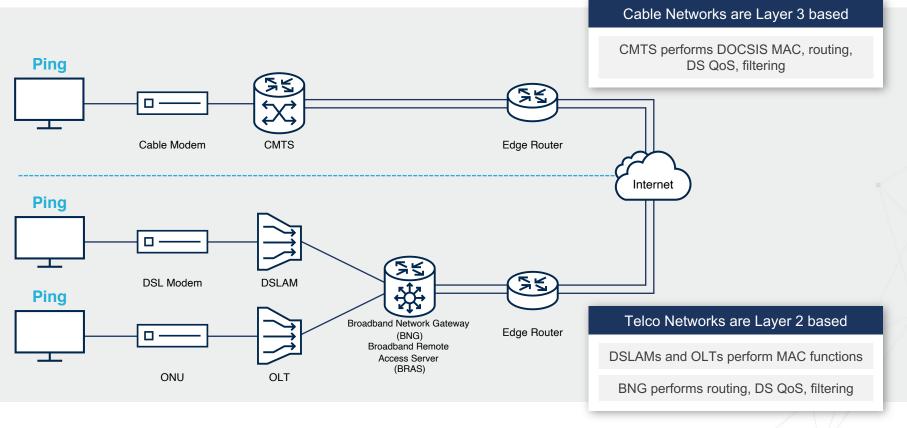
IEEE PON Framing

- EPON is based on Ethernet (that's the "E" in EPON☺)
 - No additional encapsulation takes place
 - Limited to Ethernet traffic (no legacy support for TDM or SDH like ITU)
 - Overall is a simpler protocol than ITU's
- CableLabs standardized the messages between an EPON OLT and ONU to provision ONUs using cable modem configuration files
 - Solves the ONU/OLT interoperability problem

XGS vs 10G EPON

Differences:	XGS PON	10G EPON
	Multiple types of traffic like Ethernet, TDM, SDH, etc (GEM encapsulation)	Ethernet only
	L2 centric - limited traffic classification/filtering on L3	L3 traffic classification – similar to cable modems
	Slightly more complex ONU management (3 types of management messages)	Simpler ONU management (uses Ethernet slow protocol messages)
	No MAC addresses on ONUs (serial numbers instead)	Plays nicer with DOCSIS provisioning

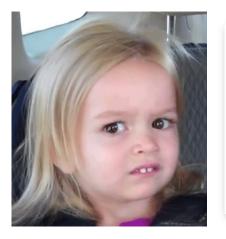
- Similarities:
 - Same data rates (10G symmetric)
 - Same optics
 - Same split ratios (up to 128 ONUs per port)
- ONUs based on latest Broadcom, Cortina, or TiBiT chipsets support both (different FW)



If your company is planning or deploying PON, what standard are you considering/using?
a) ITU GPON
b) ITU XGS
c) EPON

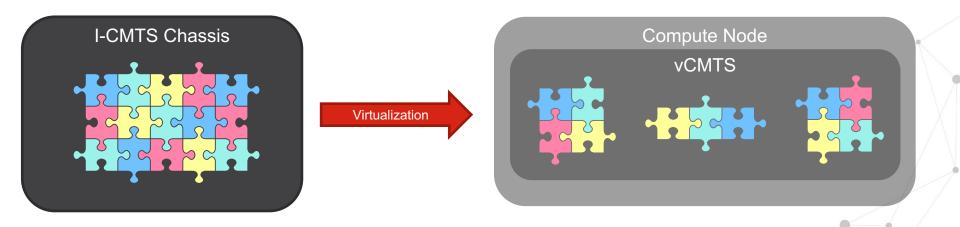
Please answer in the chat

CABLE VS TELCO RESIDENTIAL DEPLOYMENTS The Broadband Network Gateway



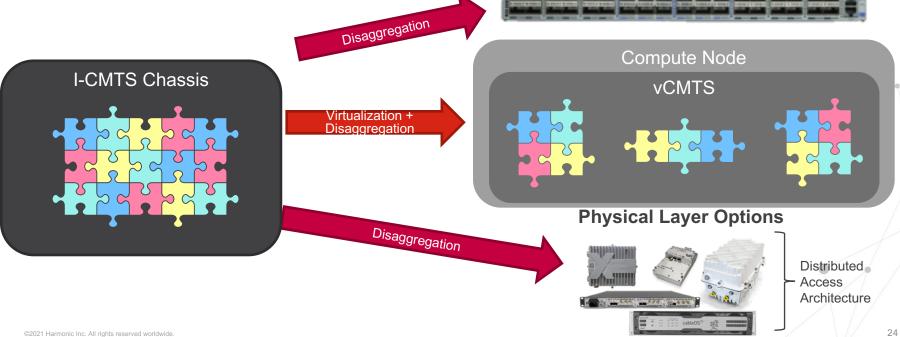
Virtualization Concepts

TECHNOLOGIES ENABLING NETWORK TRANSFORMATION


Virtualization? Disaggregation?? Cloud Native??? What does that actually mean?

... and how does that help me?

CMTS VIRTUALIZATION


 CMTS virtualization is the process of moving the functions performed by an integrated CMTS hardware to software, using off the shelf servers

CMTS DISAGGREGATION

harmonic

Disaggregation is the process of separating different functions performed by a • single entity into multiple components

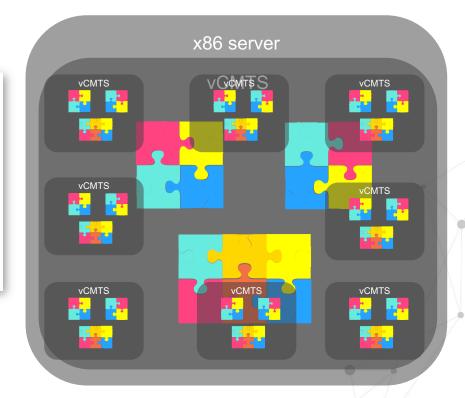
VIRTUALIZATION + DAA BENEFITS

Virtualization

- Immediately benefit from savings on space, power, cooling and cabling
- Perfect fit for small scale and large scale with sustainable growing capacity
- Feature velocity to adapt to customer demands fast
- Runs on generic servers
- In volume deployments

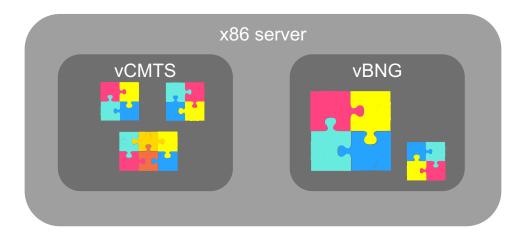
DAA

- Improved plant performance
 - SNR/MER = better Speed performance
 - Reduce maintenance / labor
- No proprietary optics move to standard ethernet
- Remove RF combining from the headend
- Better fiber utilization
 - Increase number of λs per fiber



CLOUD NATIVE ARCHITECTURE

A term that describes applications and services built to exist in the cloud


- Allows for quick up/down scaling
- Platform independent
- Managed by a central orchestrator

CLOUD NATIVE AND PON

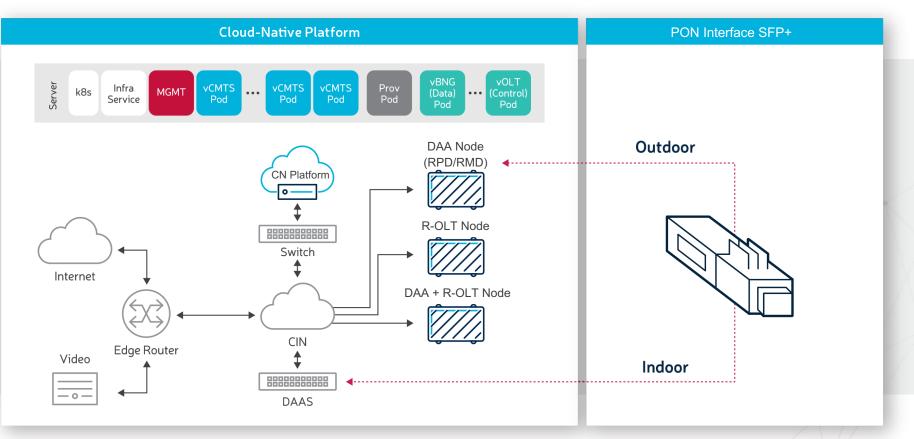
- Many of the building blocks from the vCMTS can be used for PON
 - Example: User traffic manipulation (i.e. QoS, classification, filtering)
- The entity in charge of IP user traffic is the virtual Broadband Network Gateway (vBNG)

CLOUD NATIVE BENEFITS

A Cloud-Native Access Platform can support different access architectures, such as DOCSIS and PON

Key benefits include:

- Orchestration: dynamically deploy different apps on the platform
- Scalability: scales from very small to very large number of service groups
- Flexibility: deployable in centralized, distributed and hybrid architectures
- Resiliency: smaller domains, increased uptime and hitless upgradability



Consolidated Access Platform

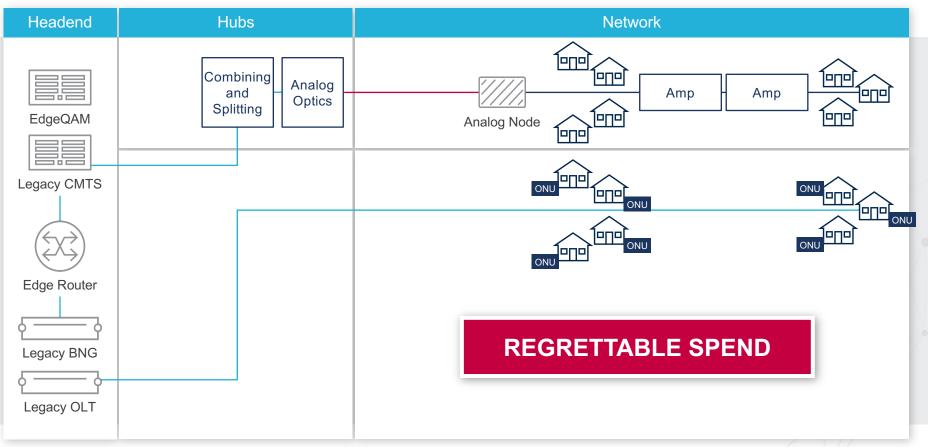
A SINGLE SOLUTION FOR HFC DOCSIS AND PON/FTTH

MSO Network Migration

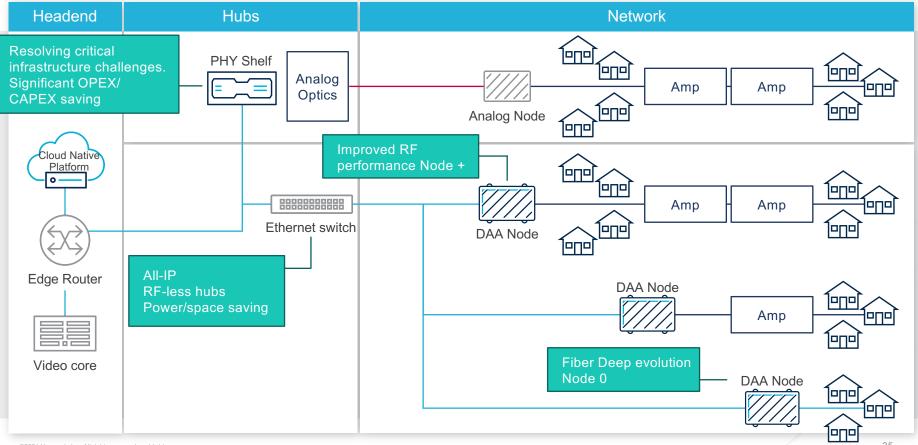
What are your access plans for the next few years? a) Deploy DAA devices (R-PHY/R-MAC PHY) b) Deploy Mid splits (85MHz) / High Splits (204MHz) c) Migrate to D4.0 (FDX/ESD) d) Cap and grow to PON

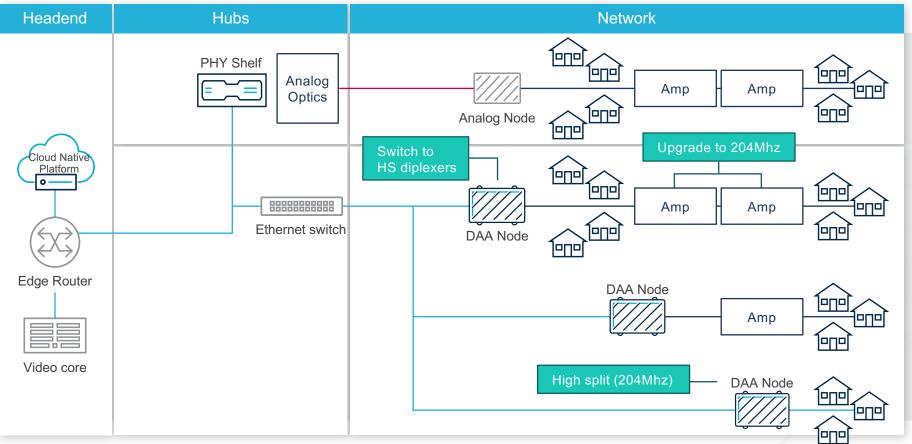
Please answer in the chat (Multiple answers ok)

MIGRATING TO PON EFFICIENTLY

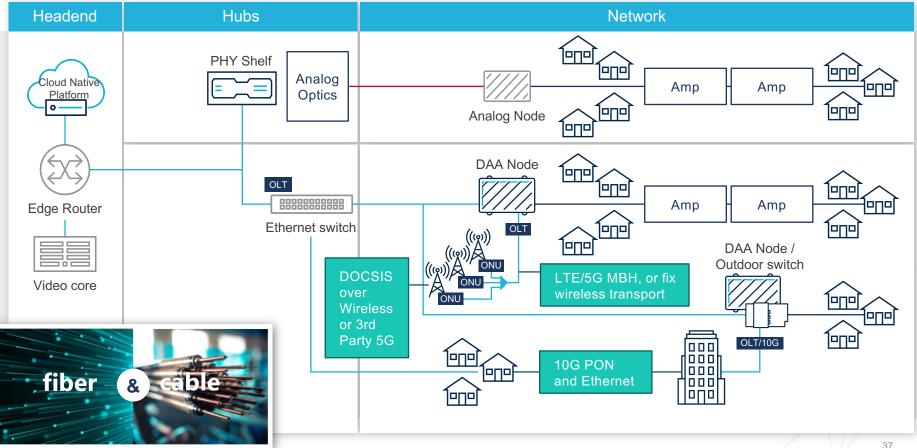


- MSOs have a considerable investment in HFC
 - An HFC network is still capable of providing Gigabit speeds for the foreseeable future
- Goal is to maximize the use of the existing HFC network while deploying PON efficiently


LEGACY NETWORK ARCHITECTURE


NETWORK EVOLUTION WITH A CLOUD NATIVE PLATFORM

harmonic


NETWORK EVOLUTION – INCREASING UPSTREAM CAPACITY WITH MID/HIGH SPLIT

NETWORK EVOLUTION WITH A CLOUD NATIVE PLATFORM

harmonic

- Cloud native technologies consolidate DOCSIS and PON on a single platform
- Maximizes the use of the HFC network while allowing a seamless transition to PON
- Simplifies operations and reduces time to market
 - Less training required for internal teams
 - Integrates with existing back-office provisioning systems
- Reduces space/power/cooling requirements

©2021 Harmonic Inc. All rights reserved worldwide.

39

Harmonic's contact

- Grant Bloom
 - Phone: 508-904-9004
 - Email: grant.bloom@harmonicinc.com

THANK YOU.

©2021 Harmonic Inc. All rights reserved worldwide.